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Our algorithm achieves a 30cm resolution of images collected by the
TMC-2 payload of Chandrayaan 2 using a combination of Deep
Learning models and feature enhancement methods. Further, we
generate an atlas of the moon as covered by TMC-2, using enhanced
images. 

Introduction

1.Super Resolution of Images

Super Resolution



We extracted data for three different payloads: 
1. TMC 2 of Chandrayan 2: DEM and orthoimages with .png and .tif 
file extensions
2.OHRC of Chandrayan 2: Calibrated images with .img file extension
3.NAC of LROC: orthoimages with .tif file extension

Data collection

Our overall Super-resolution model is a combination of two
different algorithms: 
1. Interpolation and
2. Deep Learning.

Model Architecture

 OHRC .png data TMC  image with corresponding DTM



Our overall Super-resolution model is a combination of two
different algorithms: 
1. Interpolation and
2. Deep Learning.

Model Architecture

Interpolation algorithms

For interpolation, we followed an ensemble approach between 3 
interpolation techniques: namely, bicubic interpolation, inter_area 
interpolation, and inter_nearest interpolation. More specifically, our 
final image is obtained by a weighted sum of the different 
interpolation techniques as below:
 
 HRImage  = ɑ * F1 (LR) + 𝛃 * F2 (LR) + Ɣ * F3 ( LR)  
 
 Where F1, F2, F3 are the 3 interpolation techniques and ɑ, 𝛃 and Ɣ 
are the corresponding weighting terms optimized using Optuna 
under the condition that ɑ + 𝛃 + Ɣ = 1



Deep Learning algorithms

Input Data For training

Original HR Image
Low Resolution image (Downsized from Original)
Masks of the craters 
Masks of the hills

Model Architecture

Generative Adversarial Networks (GANs) with Turing Test
Adversories for Elevation-Centric Image Super-Resolution



We modify the conventional discriminator of GANs with a novel turing
loss that ensures the model places a special emphasis on the region of
interest: in our case the craters and the hills. More specifically, as shown
in the figure above, we have a Turing Test 1 (T1) which is trained to
discriminate the fake image (SR) from the original image (HR).
The Turing Test 2 (T2) is trained to perform the same discrimination
only on the craters. Likewise Turing Test 3 (T3) is trained to discriminate
the hills in the lunar surface. We detect the hills and craters from the
TMC 2 ortho images using manual annotation of DEM maps of TMC2
data .
The network is trained in 5 stages on the TMC2 images by downsizing
them. We perform tiling of the images to pass it to the model.

Model Explanation 

Improved Hybrid Attention Transformer for Lunar Image Super-
Resolution

Input Data For training

Original High Resolution Image
Low Resolution image (Downsized from Original Images)

Model Architecture



We suggest a unique Hybrid Attention Transformer to activate more
input pixels for reconstruction (HAT). It combines self-attention and
channel attention strategies, utilizing their complementing benefits.
Additionally, the paper improves the interaction between surrounding
window characteristics, we add an overlapping cross-attention module
to better aggregate the cross-window information. 

Real-ESRGAN: Training Real-World Blind Super-Resolution with
Pure Synthetic Data 

Model Explanation 

Input Data For training
Original High Resolution Image
Low Resolution image (Downsized from Original Images)



Sharpening 
The sharpening algorithm also enhanced the noise per pixel of the
image, hence we had to use a denoising algorithm to check the
signal-to-noise preservation.

Denoising
We use a pre-trained Deep Learning model called NAFNet for
Image Denoising

Sharpening and Denoising

We downsized the original OHRC images 16 times using bicubic
interpolation and then we used the proposed algorithms to get
super-resolved images. Further, we compared the original image
with the super-resolved image to get the following results:

Image comparison

Model Explanation 

We adopt a state-of-the art GAN model which uses residual-
in-residual dense block in generator and a residual network in
the discriminator. To enhance its performance we add a
combination of fast fourier transform loss and Frequency
Domain Perceptual Loss instead of normal mean square error.



Model Inference Time Architecture SSIM FSIM PSNR SAM

BicubIc 
Interpolation 21.8 3 Maths 0.762 0.651 59.014 64.672

SRGAN 55.9 3 GAN 0.812 0.681 59.421 64.659

EDSR 51.8 3 GAN 0.814 0.685 59.482 64.654

WDSR 39.5 3 GAN 0.816 0.687 59.496 64.652

MSRNet 356 to CNN 0.828 0.691 59.561 64.42

SwinIR 359 3 Transformer 0.858 0.696 59.653 64.39

Attention 2 
Attention 35.7 S Attention 0.812 0.679 59.305 64.663

Real ESRGAN 48.7 S GAN 0.838 0.689 59.559 64.645

HAT 337s Transformer 0.88 0.705 59.719 64.635

Lunar T-GAN 
(Ours) - trained 

only on 50 
images

11s GAN 0.794 0.672 59.104 64.669

Experimental Results



Observing the improved data in lunar super-resolution images can
provide valuable information about the geological and physical
processes that have shaped the moon's surface over time. This can
provide a better understanding of the moon's history and evolution,
as well as help in planning for future missions to the moon. The high
resolution images can also reveal new features and details that were
previously not visible, leading to new discoveries and scientific
insights.
We have built a variety of algorithms for comparison of physical
features obtainable from the lunar images, before and after super-
resolution. This conveys the improvement in the detection and
analysis of features in the super-resolved images.

Evaluation of super resolution

Data and Algorithm : 

There are two major criteria on which the super resolved images have
been evaluated:
1.Crater and hill frequency comparison 

Dynamic Thresholding Algorithm:
We have used a dynamic thresholding algorithm on the DEM data. We
have made a histogram of the pixel value distribution and have
considered the top 2% of the pixels as a threshold for identifying hills
within the terrain data. Similarly, we have considered the bottom 2% of the
pixels for identifying craters.  
 

Histogram of pixel values



Results: We have obtained the results for the craters and depressions
detected using dynamic thresholding for both the original images and the
super resolved images. Link to code

Inference: We can infer from these results that there is an increase in the
frequency of craters being detected in the case of the super-resolved
images. This is evident due to the increase in the number of small or
misshaped craters which were not well resolved in the original images and
hence could not be detected properly. However, the large-scale features
remain the same. We can infer from this that the super-resolution is not
involuntarily affecting the existing features which were already well-
resolved. Thus, there is a tangible increase in the quality of data available
for counting craters in case of the super-resolved images.

Original Image (Low Altitude Terrain) Super Resolved Image (Low Altitude Terrain)

https://drive.google.com/file/d/1DgKvk7phRVhIxXmHdwrf8lUUneEg3w7x/view?usp=sharing


Data and Algorithm: The gradient of the lunar terrain has been studied

Results: We observe that the super resolution is free from defects and has
a finer topology reminiscent of the lunar surface, hence suggesting that our
super resolution pipeline can also be employed for DEM maps.

Inference: The super resolution of the DEM data provides a highly accurate
projection of the lunar terrain. This can greatly help in planning future lunar
missions and determining locations for rover and manned mission
landings.

    2. Slope and Terrain of craters

        using the Depth Elevation Map (DEM) data. The heat map of the terrain 
        gradient has been studied for both the original images and the super 
        resolved  images. The RichDEM python pipeline has been used for 
        rendering the super resolved images. Furthermore, using the  gradient map    
as  a reference a three-dimensional plot of a spatially dynamic region of the
DEM data has been generated to gain a 
        deeper understanding of the ways in which the terrain in affected upon   
        super-resolution.

    

  

Gradient Map (Original Image) Gradient Map (Super-resolved Image)



2. Atlas generation
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We then resized all TMC files to have the same number of pixels per
degree of the image. Then we created an empty array corresponding to
the tile and began populating it with the overlapping parts of the image
one by one. Images are pasted one on top of the other while ensuring
the null values around the lunar data in the image are replaced by the
underlying image. This is done in order to remove the black borders
present in the TMC images. Additionally, we calculate the average non
zero pixel value for each image in the tile. We take the median value of
the images as a reference value and normalize all images to it. This is
done to ensure all TMC strips are of equal brightness. Furthermore, we
extend the same algorithm to normalize brightness across all 20°x20°
tiles.

Every TMC file has a corresponding XML file which contains information
regarding the coordinates that are mapped in the image. We have used
the coordinates labeled as “Corrected coordinates” for this analysis. We
have divided the entire lunar atlas, which ranges from -180° to +180° in
longitude and -90° to 90° in latitude, into tiles of 20°x20°. Now, we
curated a list of all the TMC files that lie in the particular 20°x20° tile for
all tiles. We also compute the coordinates of the polygon created by
the TMC-tile overlap.

Overlapping TMC region detection

Segmented Mosaic stitching


